Nonlinear autoregressive analysis of the 3/second ictal EEG: implications for underlying dynamics.

TitleNonlinear autoregressive analysis of the 3/second ictal EEG: implications for underlying dynamics.
Publication TypeJournal Article
Year of Publication1995
AuthorsSchiff, N.D., Victor J D., and Canel Annemarie
JournalBiological Cybernetics
Volume72
Pagination527-532
Abstract

n a previous study (Schiff et al. 1991, Schiff et al. 1995) nonlinear autoregressive (NLAR) models applied to ictal EEG recordings in six patients revealed nonlinear signal interactions that correlated with seizure type and clinical diagnosis. Here we interpret these models from a theoretical viewpoint. Extended models with multiple nonlinear terms are employed to demonstrate independence of nonlinear dynamical interactions identified in the "NLAR fingerprint" of patients with 3/second seizure discharges. Analysis of the role of periodicity in the EEG signal reveals that the fingerprints reflect the dynamics not only of the periodic discharge itself, but also of the fluctuations of each cycle about an average waveform. A stability analysis is used to make qualitative inferences concerning network properties of the ictal generators. Finally, the NLAR fingerprint is analyzed in the context of Volterra-Weiner theory.

Weill Cornell Medicine Consortium for the Advanced Study of Brain Injury 520 East 70th Street New York, NY