Consortium for the Advanced Study of Brain Injury

You are here

Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain.

TitleRegional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain.
Publication TypeJournal Article
Year of Publication2014
AuthorsFridman, Esteban A., Beattie Bradley J., Broft Allegra, Laureys Steven, and Schiff Nicholas D.
JournalProc Natl Acad Sci U S A
Date Published2014 Apr 14
ISSN1091-6490
Abstract

Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [(18)F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following.

DOI10.1073/pnas.1320969111
Alternate JournalProc. Natl. Acad. Sci. U.S.A.
PubMed ID24733913

Weill Cornell Medicine Consortium for the Advanced Study of Brain Injury 520 East 70th Street New York, NY